• zaloguj się
  • utwórz konto

Studia I i II stopnia oraz jednolite studia magisterskie - 2024/2025

zmień rekrutację anuluj wybór

Oferta prezentowana na tej stronie ograniczona jest do wybranej rekrutacji. Jeśli chcesz zobaczyć resztę oferty, wybierz inną rekrutację.

Zastosowania fizyki w biologii i medycynie, stacjonarne, drugiego stopnia

Szczegóły
Kod S2-FBM
Jednostka organizacyjna Wydział Fizyki
Kierunek studiów Zastosowania fizyki w biologii i medycynie
Forma studiów Stacjonarne
Poziom kształcenia Drugiego stopnia
Profil studiów ogólnoakademicki
Języki wykładowe polski
Minimalna liczba studentów 3
Limit miejsc 15
Czas trwania 2 lata
Adres komisji rekrutacyjnej rekrutacja@fuw.edu.pl
tel. (22) 55-32-506
Adres WWW http://www.fuw.edu.pl/
Wymagany dokument
  • Wykształcenie wyższe
  Zadaj pytanie
Obecnie nie trwają zapisy.

(pokaż minione tury)

Program studiów

  • dyscyplina wiodąca: nauki fizyczne, pozostałe dyscypliny: nauki chemiczne, nauki biologiczne, nauki medyczne, nauki o zdrowiu
  • studia interdyscyplinarne
  • trzy specjalności do wyboru: biofizyka molekularna, fizyka medyczna, neuroinformatyka
  • wybór specjalności na początku studiów
  • kształcenie w ramach specjalności od początku studiów
  • kształcenie w zakresie fizyki oparte na światowej klasy badaniach naukowych prowadzonych na Wydziale Fizyki UW
  • kształcenie w na podstawie indywidualnego planu studiów przygotowywanego przez studenta zgodnie z jego zainteresowaniami, wspólnie z opiekunem kierunku
  • szeroki zakres zajęć laboratoryjnych
  • dostęp do pracowni komputerowych i bogato wyposażonych bibliotek specjalistycznych
  • możliwość wykonywania własnych projektów i prototypów w pracowni Makerspace@UW
  • możliwość uczestniczenia w pracach naukowych prowadzonych przez grupy badawcze na Wydziale Fizyki.
  • praktyki zawodowe w ramach studiów
  • zajęcia na Wydziale Fizyki UW (ul. Pasteura 5)

Interdyscyplinarny kierunek studiów łączący fizykę z naukami biologicznymi i medycyną. Pogranicze tych nauk jest jednym z najdynamiczniej rozwijających się obszarów badań naukowych, a także zastosowań najnowszych technologii.

Charakterystyka specjalności

Biofizyka molekularna:
Celem biofizyki molekularnej jest badanie układów o znaczeniu biologicznym metodami fizycznymi, takimi jak wielowymiarowy jądrowy rezonans magnetyczny, metody mikroskopii i manipulacji pojedynczymi cząsteczkami, spektrometria masowa, ultrawirowanie analityczne oraz teoretyczne metody modelowania molekularnego. Badania w tym zakresie, obejmujące zagadnienia z pogranicza fizyki, chemii, biologii i bioinformatyki, stwarzają unikalną możliwość konstruowania modeli obiektów biologicznych i wyjaśniania mechanizmów procesów zachodzących w układach ożywionych na dowolnym poziomie, od pojedynczych makromolekuł a nawet wiązań molekularnych do całych organizmów i ekosystemów. Informacje, których dostarczają badania metodami biofizyki molekularnej są niezwykle przydatne w medycynie np. przy poznawaniu molekularnych podstaw chorób i projektowaniu skutecznych leków.

Fizyka medyczna:
W medycynie w ostatnich latach zostały wprowadzone nowe technologie diagnostyczne i terapeutyczne wywodzące się z osiągnięć fizyki. Tomografia pozytonowa (PET) jest już stosowana w wielu ośrodkach diagnostyki nowotworowej w Polsce a terapia hadronowa, opierająca się na najnowszych wynikach badań naukowych w zakresie fizyki jądrowej, wprowadzana do praktyki klinicznej w Europie (Heidelberg i Pavia) i również stosowana w Polsce (Kraków). Współczesna diagnostyka i terapia medyczna, w szczególności diagnostyka i terapia nowotworów wymaga nie tylko wykwalifikowanego personelu lekarskiego, ale i fizyków medycznych oraz personelu technicznego wspomagającego medyczne technologie radiacyjne.

Neuroinformatyka:
Gwałtowny rozwój neuroinformatyki na świecie odbywa się zarówno w zakresie badań podstawowych, jak i konkretnych zastosowań. Studia neuroinformatyki dostarczą gospodarce specjalistów w dziedzinie już od kilku lat dynamicznie rozwijającej się za granicą, która owocuje coraz większą ilością ważnych zastosowań medycznych w zakresie zaawansowanych technologii. Celem studiów drugiego stopnia w zakresie Neuroinformatyki jest zapewnienie studentom rozszerzonego w stosunku do studiów I stopnia wykształcenia w dziedzinie informatyki i statystyki, potrzebnego w klinikach i laboratoriach.

Sylwetka absolwenta

Absolwenci specjalności biofizyka molekularna będą przygotowani do operowania rozszerzoną wiedzą z zakresu biologii, fizyki i chemii.

Uzyskują umiejętności:

  • obsługi nowoczesnej aparatury badawczej i stosowania związanych z nią metod fizycznych, chemicznych i biologicznych w laboratoriach badawczych,
  • rozwiązywania złożonych problemów dotyczących funkcjonowania biomolekuł,
  • projektowania biomolekuł pod kątem zastosowań biotechnologicznych i medycznych.

Będą także praktycznie wykorzystywać swoje umiejętności w laboratoriach o profilu medycznym, analitycznych i diagnostycznych.

Absolwenci fizyki medycznej będą mieli umiejętności łączenia podstawowych metod i idei z różnych obszarów fizyki, chemii i biologii oraz wybranych dziedzin medycyny. Ponadto studia magisterskie przygotują wysoko wykwalifikowanych specjalistów ochrony radiologicznej i dozymetrii dla Zakładów Medycyny Nuklearnej i Zakładów Radioterapii, a także dla przemysłu stosującego techniki radiacyjne.
Atutem absolwentów fizyki medycznej będzie umiejętność wykorzystania interdyscyplinarnego podejścia do problemu. Znajomość zaawansowanych technik doświadczalnych, obserwacyjnych i numerycznych pozwoli absolwentowi zaplanować i wykonać złożony eksperyment, dokonać krytycznej analizy wyników pomiarów, obserwacji lub obliczeń teoretycznych i modelowania komputerowego wraz z oceną dokładności wyników oraz zinterpretować dane doświadczalne na gruncie teorii i modeli teoretycznych. Dzięki temu absolwent może być cennym pracownikiem nie tylko zespołu naukowego, ale również w wielu innych dziedzinach. Dzięki umiejętności syntezy metod i idei z różnych obszarów będzie potrafił wyszukać w literaturze i zaadaptować wiedzę i metodykę fizyki, a także stosowane metody doświadczalne i teoretyczne do rozwiązywanego problemu, oraz klarownie przedstawić wyniki badań w grupach interdyscyplinarnych.

Absolwenci neuroinformatyki będą wykształceni w dziedzinie pomiaru i analizy sygnałów takich jak EEG, EMG, EKG szeroko stosowanych w diagnostyce klinicznej. Zapoznają się również z technikami takimi jak: neurofeedback czy interfejsy mózg-komputer (BCI), stanowiące jedyną szansę dla pacjentów w ciężkich stadiach chorób neurodegeneracyjnych. Absolwent neuroinformatyki pozna zaawansowane techniki doświadczalne, obserwacyjne i numeryczne w eksperymentach fizycznych, chemicznych i biologicznych oraz będzie potrafił opisać i wytłumaczyć ich wyniki z wykorzystaniem języka matematyki, pozna techniki programowania oraz korzystania z komputerowych baz danych. Znajomość technik pomiarowych, programowania i technik statystycznej analizy danych zapewni im szeroki dostęp do rynku pracy. Absolwenci będą cennymi pracownikami, potrafiącymi mierzyć i analizować sygnały stosowane w praktyce klinicznej, wykonywać opracowania statystyczne danych medycznych, zestawiać systemy do zyskującego na popularności neurofeedbacku.

 


Zasady kwalifikacji dla kandydatów z dyplomem polskim

Kwalifikacja odbywa się na podstawie wyników osiągniętych w czasie dotychczasowych studiów. Każda ocena S uzyskana przez kandydata na ukończonych studiach uprawniających do podjęcia studiów drugiego stopnia zostanie przeliczona na punkty rekrutacyjne PR zgodnie ze wzorem:

PR = 0,1/(Smax-Smin) * SUMA po i [w_i * h_i *(S_i - Smin)]

gdzie:

Smax, Smin - odpowiednio najwyższa i najniższa ocena możliwa do zdobycia (tj. skala ocen, np. od 2 do 5)
w_i - waga przedmiotu (wg współczynników określonych poniżej)
h_i - liczba godzin przedmiotu (zgodna z suplementem dyplomu lub wypisem ocen ze studiów potwierdzonym przez jednostkę, w której kandydat studiował)
S_i - ocena zdobyta przez kandydata, przy czym w przypadku, kiedy kandydat ma więcej niż jedną ocenę z danego przedmiotu (np. poprawa oceny, ponowne
podejście do egzaminu w kolejnym roku), uwzględnia się dany przedmiot jedynie raz z najwyższą z uzyskanych ocen
i - indeks przedmiotów branych pod uwagę w wyliczeniu, przy czym przedmioty, które kończą się zaliczeniem (bez oceny) nie będą brane pod uwagę w wyliczeniu punktów rekrutacyjnych.

Punkty rekrutacyjne każdego kandydata będą obliczane jako suma ocen (po przeliczeniu) z przedmiotów uzyskanych na studiach, przy czym każda ocena będzie mnożona przez liczbę godzin danego przedmiotu oraz przez współczynnik zależny od rodzaju przedmiotu.

Współczynnik zależny od rodzaju przedmiotu wynosi odpowiednio:

  1. dla wykładów, ćwiczeń rachunkowych i laboratoriów z zakresu fizyki: 2,0
  2. dla wykładów, ćwiczeń rachunkowych i laboratoriów z zakresu astronomii: 2,0
  3. dla wykładów i ćwiczeń rachunkowych z matematyki: 2,0
  4. dla przedmiotów z zakresu programowania i metod numerycznych: 1,5
  5. dla wykładów, ćwiczeń rachunkowych i laboratoriów z zakresu chemii i biologii: 1,0
  6. dla pozostałych: 0,0

Przypisując współczynnik do przedmiotu, w którego zakresie pojawia się jednocześnie np. fizyka i chemia, bierze się pod uwagę ten przedmiot tylko raz z najwyższym współczynnikiem.

Wynik PR zaokrągla się w dół do liczby całkowitej.

Warunkiem przyjęcia na studia jest uzyskanie końcowej liczby punktów rekrutacyjnych nie mniejszej niż 100 oraz zapewniającej miejsce na liście rankingowej mieszczące się w ramach obowiązującego limitu. Zgodnie z powyższym wzorem nie ma górnego limitu możliwych punktów do zdobycia.

Kandydat jest zobowiązany dostarczyć jako załączniki w systemie IRK:

  1. skan suplementu dyplomu lub wypisu ocen ze studiów z informacją o wymiarze godzinowym zajęć, potwierdzonego przez jednostkę, w której kandydat studiował;
  2. skan oświadczenia podpisanego przez kandydata, zawierającego wynik samodzielnie przeprowadzonych obliczeń punktów rekrutacyjnych (wg powyższych reguł) w formie tabeli zawierającej przedmioty z suplementu/wypisu ocen ze studiów, które mają współczynnik większy od zera.

Nazwa przedmiotu

Liczba godzin

Uzyskana ocena

w skali od … do ...

Waga przedmiotu

Wynik

 

Zasady kwalifikacji dla kandydatów z dyplomem zagranicznym

Obowiązują takie same zasady jak dla kandydatów z dyplomem uzyskanym w Polsce.

 

Sprawdzenie kompetencji kandydatów do studiowania w języku polskim

Kandydat z dyplomem zagranicznym powinien mieć potwierdzoną znajomość języka polskiego na poziomie co najmniej B2 według Europejskiego Systemu Opisu Kształcenia Językowego Rady Europy, poświadczoną honorowanym przez Uniwersytet Warszawski dokumentem.

W przypadku braku takiego dokumentu kandydat może przystąpić do rozmowy kwalifikacyjnej z przedstawicielem Komisji rekrutacyjnej po zgłoszeniu takiej potrzeby przez system IRK.

Rozmowa kwalifikacyjna odbywa się w całości w języku polskim.
Rozmowa kwalifikacyjna nie jest punktowana, ale pozytywny wynik takiej rozmowy jest warunkiem koniecznym przystąpienia do dalszych etapów procesu rekrutacyjnego.

Scenariusz rozmowy kwalifikacyjnej.

  1. Przedstawienie się kandydata i sprawdzenie tożsamości kandydata.
  2. Przedstawienie przez kandydata ogólnych informacji o dotychczasowym przebiegu kształcenia (ok. 5 minut).
  3. Wypowiedź kandydata na temat wybranego przez siebie odkrycia naukowego z dyscypliny nauki biologiczne, nauki chemiczne lub nauki fizyczne – na poziomie popularnym (ok. 5 minut).
  4. Zakończenie rozmowy.

Termin rozmowy sprawdzającej znajomość języka polskiego (jeśli dotyczy kandydata): 19 września 2024 r., godz. 9:00-18:00, rozmowa zostanie przeprowadzona zdalnie na platformie Google Meet

Wymagania dotyczące znajomości języka polskiego. >> Otwórz stronę! <<

 

Terminy

Ogłoszenie wyników: 24 września 2024 r.

Przyjmowanie dokumentów: 

  • I termin: 25-26 września 2024 r.
  • II termin (w przypadku niewypełnienia limitu miejsc w pierwszym terminie): 27, 30 września 2024 r.

 

Opłaty

Opłata rekrutacyjna (w tym opłaty wnoszone za granicą)

Opłata za wydanie legitymacji studenckiej (ELS)

 

Wymagane dokumenty

Lista dokumentów wymaganych do złożenia w formie papierowej w przypadku zakwalifikowania na studia

 

Dodatkowe informacje

Znajdź nas na mapie: Wydział Fizyki